Derivative/Slope/Rate of Change Graphs

\[f'(x) = \text{slope of the tangent} = \text{instantaneous rate of change} = \text{the derivative} = \frac{df}{dx} \]

They all ask for the same thing!

Basic Rules:

1) Any relative minimum or maximum of \(f(x) \) will become an \(x \)-intercept on \(f'(x) \).

2) An inflection point on \(f(x) \) that is on an increasing slope will become a maximum on \(f'(x) \).

3) An inflection point on \(f(x) \) that is on a decreasing slope will become a minimum on \(f'(x) \).

- Exception: if an inflection point has a slope of zero, it will become a min/max still, but on the \(x \)-axis

4) Anywhere \(f(x) \) is increasing, \(f'(x) \) will be above the \(x \)-axis.

5) Anywhere \(f(x) \) is decreasing, \(f'(x) \) will be below the \(x \)-axis.

6) Anywhere \(f(x) \) is concave up, \(f'(x) \) will be increasing.

7) Anywhere \(f(x) \) is concave down, \(f'(x) \) will be decreasing.
Derivative / Slope / Rule of Change Graphs

Special / Confusing Cases

Try This!